首页> 外文OA文献 >Numerical performance of the matrix pencil algorithm computing the greatest common divisor of polynomials and comparison with other matrix-based methodologies
【2h】

Numerical performance of the matrix pencil algorithm computing the greatest common divisor of polynomials and comparison with other matrix-based methodologies

机译:矩阵像素算法的数值性能计算多项式的最大公约数,并与其他基于矩阵的方法进行比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new numerical algorithm for the computation of the greatest common divisor (GCD) of several polynomials, based on system-theoretic properties. The specific algorithm, characterizes the GCD as the output decoupling zero polynomial of an appropriate linear system associated with the given polynomial set. The computation of the GCD is thus reduced to specifying a nonzero entry of a vector forming the compound matrix of a matrix pencil directly produced from the associated linear system. A detailed description of the implementation of the algorithm is presented and analytical proofs of its stability are also developed. The MATLAB code of the algorithm is also described in the appendix.
机译:本文基于系统理论性质,提出了一种新的数值算法,用于计算多项式的最大公约数(GCD)。特定算法将GCD表征为与给定多项式集相关联的适当线性系统的输出去零零多项式。因此,GCD的计算减少为指定向量的非零输入,该向量形成直接从相关联的线性系统生成的矩阵笔的复合矩阵。给出了该算法实现的详细描述,并开发了其稳定性的分析证明。附录中还描述了该算法的MATLAB代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号